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Abstract.

Astronomical objects known as planetary nebulae (PNe)isboga shell of gas expelled by
an aging star. In cases where the gas shell can be assumedeitipbeidal, the PN can be
easily modeled in three spatial dimensions. We utilize a ehtitht joins the physics of PNe to
this geometry and generates simulated nebular images.|lélSigace Telescope images of actual
PNe provide data with which the model images may be compa&iedemploy Bayesian model
estimation and search the parameter space for values thetage a match between observed and
model images. The forward model is characterized by thirfegrameters; consequently model
estimation requires the search of a 13-dimensional pasrapace. The ‘curse of dimensionality,
compounded by a computationally intense forward problemken forward searches extremely
time-consuming and frequently causes them to become tajope local solution. We find that
both the speed and quality of the search can be improved lucirgglthe dimensionality of the
search space.

Our basic approach utilizes a hierarchy of models of inédngasomplexity. Earlier studies
establish that a hierarchical sequence converges morklyjdad to a better solution, than a search
relying only on the most complex model. Here we report redolt a hierarchy of five models. The
first three models treat the nebula as a 2D image, estimasmgpsition, angular size, orientation
and rim thickness. The last two models explore its charities as a 3D object and enable us to
characterize the physics of the nebula. This five-modebhiéry is applied to real ellipsoidal PNe
to estimate their geometric properties and gas densityl@sofi

BACKGROUND

Stars with 0.8—8 solar masses end their lives as swollenaatsgsurrounded by cool ex-
tended atmospheres. Nuclear reactions in the red giantoeage carbon, nitrogen, and
oxygen, which are transported by convection to the outeelepe of the atmosphere.
As the red giant finally collapses to become a white dwarf #nvelope is expelled
from the star to form a planetary nebula (PN) rich in organateaules. (See Figure 1.)
The physics, dynamics, and chemistry of these nebulae amypmderstood and have
implications not only for our understanding of the steliée tycle but also for organic
astrochemistry and the creation of prebiotic moleculestarstellar space.
Three-dimensional (3D) PN models are inferred from datasisting of images ob-
tained with the Hubble Space Telescope (HST) [1]. We emplggeBian model estima-



FIGURE 1. Planetary Nebula 1C418 FIGURE 2. Synthetic Nebula ibpes1.
the Spirograph Nebula.

tion using a parameterized physical model of the nebulachvimicorporates much prior
information about the known physics of how the PN is illumethby ionizing radiation

from the central star. The model captures the nebula’s sloa@atation, inclination to

the line of sight, and 3D mass distribution. The 2D projeti® sensitive to variations
in the 3D parameters, enabling us to learn the nebular sheitom the data.

THE HIERARCHY

Knuth and Hajian [2] developed a hierarchy of models thawvathe quick capture of a
critical subset of the model parametesauss, SigHat, andSigHat2 are two-dimensional
models, whileFastSES and IBPES are three-dimensionalGauss captures the center
position and general extersigHat captures the eccentricity and orientation, fygHat2
captures the shell thickness. These two-dimensional rmaighificantly decrease the
analysis time and increase the accuracy of the final redualfsart by assuring that
the final solutions are reasonabtastSES assumes the PN is made of two concentric,
co-axial, equi-eccentric prolate ellipsoids. It refines #igHat2 estimate of the shell
thickness and captures an initial estimate pthe luminosity-density paramet&sPES

is the full physical model and captures four parameters tsedéscribe the 3D density
profile of the PN and the inclination of the nebula to the lidesight. Figure 2 is a
synthetic PN generated witBPES.

The 2D Models—A Review

The Gauss model describes the PN image as a 2D circular Gaussianbdittn

(X— Xo)z + (3/—)’0)2
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G(x,y) = lo exp|— (1)

Gauss estimates four valuedp, which is the overall intensity of the imagéx,Yo),
which are the coordinates of the center of the nebulagnehich is the nebula’s overall



extent. These quantities are basic to any image of any swoigikect and necessarily
belong to the simplest model. Figure 3, top left, is an exapbGauss solution.

Two significant elaborations are made in order to createsigiteat model. First, the
circular Gaussian is made elliptical by replacimdy oyx andgy. Second, the Gaussian
Is replaced by a sigmoid-hat function, which rises from zerone, plateaus, and falls
symmetrically back to zero. Th&gHat function is

1
Sxy)=lo (1‘ T exp{ A [r(xy) 11}) )

where
r(%,Y) = (Co(X—X0)®+ 2Cy(X—Xo) (Y — Yo) +Cyy(y — Yo)?) , and 3)
cofw sifw _ oy sifw  cofw
Cx = oz o7 Cy = (0,2 — 0, ?) sinw cosw, Cyy= oz T o2 (4)

Variablesly, Xo andy, are as beforew is the orientation of the PN in the plane of the
sky, ox and oy are the major and minor semi-axes of the ellipse, Arda nuisance
parameter—is the e-folding length of the intensity fallafthe edge of the PN.

SigHat2 models the image as a difference of two sigmoidal hat funstio

T(va):|+sk(xvy) - I*&(va)' (5)

S;(x,y) andS_(x,y) are thesigHat functions in (2). The elliptical ‘hats’ defined iy,
andS_ are concentric, coaxial, and equi-eccentric but have ensgmi-axes and falloff
rates,ox,, 0y;, AL andoy_,0y_,A_. The equi-eccentric constraint is enforced through
use of a thickness ratid, applied with

O-X— - A ax+ and Gy_ - A' O-y+ (6)

Recall eccentricity ise? = (02 — oy )/0y = (0f, — 0Z,)/0Z,. See Knuth and
Hajian [2] for a complete development of the 2D models.

The 3D Models

In FastSES andIBPES, the PN is modeled as a prolate spheroidal shell of gas. Since
the shell is optically thin at visible wavelengths, the bisiintensity of light from the
nebula is proportional to the integral along the line of sighthe gas density squared.
Consequently, the densest parts of the nebula are visuallyriphtest.

FastSES, which stands for Fast Scaled Ellipsoidal Shell, describe$N as two concen-
tric, coaxial, equi-eccentric prolate spheroids with gammn density gas between them.
Let the center of the ellipsoids K8, Yo, 2,), the semi-axes b@andb, the orientatiorw,
and the inclination. For the plane of the sky in theg-plane and fox the line of sight,
the distancely through an oriented and inclined prolate spheroid is given b

dy = v/B2—4AC /A (7)



where

A

A = b’cogi +a’sirfi, A = b’sir’1 +a’cos1,

B = 2cosi (b?—a?)(sint sinw(y—Yo) +sini cosw(z— z,)), (8)

C = (Asifw+a?cofw)(y—Yo)>+ (Acog w +asin’ w)(z— 2)?
+2(b? — a?)[sin1 sinw (y —Yo)] [sin! cosw (z— z,)] — a%b?.

An imaginary solution to (7) indicates(g, z) position outside the ellipsoid and, there-
fore, a zero value fody. The image brightness of pixgy, z) is given by

F(y,2)=1o n? [dxo — Olyi] 9)

wheren is the number density of radiating particles in the gas betwhe ellipsoids and
wheredy, andd,; are the line-of-sight distances through the outer and ietigasoids,
respectively.

IBPES, which stands for lonization Bounded Prolate Ellipsoidakl§hs a physics-
based model introduced by Aaquist and Kwok [3] based upork wgrMasson [4, 5].
IBPES adds two specific assumptions to thoseradftSES. First, it assumes the PN is
ionization-bounded, which means that all the ionizing aéidn from the central star is
absorbed before it reaches the outer boundary of the steit the ionization boundary
comprises the outer boundary of the visible portion of theutee Second, it replaces the
assumption of an outer ellipsoid with an explicit formula foe gas density. A typical
nebula has been compressed radially by hot winds from thieadetar and may exhibit
latitudinal density variations from any of a variety of cas$BPES models the density
as a separable product of functions of the spherical polsablas

n(r,8,¢) = no Ne(®) Nr(r) Ne(6)
206\ ¢

B+(1-B)(=) |, 0<6<3
=nonfp(%>y- {BE;B)(zgrnze)a}, ggegrzr (10)
T

wheren, andn, are constants arf@ (0) is the radial distance from the star to the inner
prolate spheroid at latitud@. Thus radial density variations are modeled as a power
law with exponeny, while latitudinal density variations—which dramatigadiffect the
shape of the outer ionization boundary—are modeled by atpeéguator ratiq3 and
a latitudinal density gradiertt. Density is independent of longitude For semi-major
axisa, semi-minor axis, and eccentricitg? = (a® — b?) /a?, the radius at latitudé is
R2(6) = b?/(1—€cog ).

lonization-boundedness is equivalent to the assumptatrathionizing photons from
the central star are absorbed and re-radiated by the ndthdaenergy absorbed can be
written asdL = ag n?(r, 8, @) [r?dr dQ] and integrated overto find the energy radiated
per unit solid angle

dL

Ro 2y
ao ag [No N ’76(9>]2/Ri <é) r dr (11)
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FIGURE 3. A Sequence of Models for 1C418.0n top, left to right, are shown the solutions from
Gauss, SigHat, SigHat2, andFastSES. Bottom right is the solution fronBPES. Bottom center is the
HST image (the data) after masking out the central star dfrdction spikes. Bottom left is the difference
image—BPES minus the data—in which the medium grey background is zertevifeick or white areas
indicate a large negative or positive difference, respelti

whereag is an absorption coefficientlL/dQ is constant because the central star pro-
vides spherically symmetric illumination to the space abii. Fory # 1.5, integration
overr gives

1 do —2y+3 e
Ro(6) = Ri(6) {1+ (m E) (W»

. —2y+3 3
= R,(e){1+f<—R3(6) 05(9)>} (12)
and fory = 1.5 gives
_R ¢
0810 09 g =

whereé is referred to as the ‘density-luminosity parameter’ and isonstant of the
nebula model quantifying both the stellar luminosity angenequatorial density.

The intensity of emitted light at a point within the nebulg@rsportional to the square
of the density of radiators at that point. The nebula is agsuto be optically thin at
visible wavelengths; consequently, all the emitted lightapes from the nebula. The
image | (x,y) is computed numerically by integrating the squared dersiityng the
line-of-sight. Figure 3 shows each model’s estimate of tNekRown as IC418 and a
difference image to compare tl®PES model to the data.
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FIGURE 4. Contours of 1 vs.a for Synthetic PN FIGURE 5. Contours of 1 vs. a for Synthetic PN
ibpesl. The apparent semi-major aaiss ‘approxi- ibpesl. Theé marks the true solution. Inclination is
matelyb+ (a— b)sini. The true solution is marked in radians. Botho andi can affect limb brightening
by a ‘e.” Inclination is in radians. but are distinguishable nevertheless.

Bayesian Estimation

Let M represent the model-generated image (‘model’)@mdpresent the actual HST
image (‘data’). We apply Bayes’ theorem

prob(M | D,I) O prob(D | M, 1) - prob(M, 1), (14)

and assign uniform priors. The likelihood is based upon ifferdnce imagéM — D),
which is anX x Y array of pixel-wise difference@Vly, — Dyy). Assuming the pixels are
ii.d., we get

(M—D)? < « (My—Dy)?
prob(D | M,I) O exp{—— =exp|— — =21, (15)
o? leyzl o2
Taking the log of both sides yields
X Y (Muw— Dw)2
log prob(D | M, 1) O [_Z z%] (16)
x=1y=1

Analytic expressions for the log probability do not existtieeIBPES model and must
be computed numerically. A typical cropped HST image is 83300 pixels. The 3D
model is 350« 400x 400 voxels. On a 1.2GHz processor, one image can be corestruct
in five minutes. Thus far, Yo, andz, have exhibited only trivial changes during 11-
parameterBPES searches$ Eight parameterélo,a,b, 1, o, B, y, &) would remain if three
were eliminated, requiring 45 minutes for each calculagbthe gradient vector. If not
eliminated, eleven parameters remain and 60 minutes an@eddor each vector.

1 parameters 12 and 13—expansion velocity and distance te-eare not yet incorporated into a model.
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FIGURE 6. Contours of a vs. 3. These two FIGURE 7. Density contours for 1C418

parameters are strongly correlated. Both of them inmnrotated and viewed side-on. In grey along the

fluence the area and amplitude of the bright equatg-axis, the radial density function,(r) peaks

rial limbs in thelBPES image: Either a largem or a  at the equator and falls as”. Along the y-axis,

smallerf3 makes the bright limb more compact. the latitudinal density functiomg(8) peaks at
the equator and falls 480 /m)“.

PRELIMINARY RESULTS

The IBPES model is defined such that, at inclination= 0, one looks down the long
axis of the prolate spheroid and sees a circular nebula @rdfhis profile elongates
with inclination until maximum elongation at an inclinatiof 77/2. The apparent semi-
major axisa’is approximately related toand to the true semi-major axasthrough the
relationd= b+ (a—b) sint, whereb is the semi-minor axis. It is not obvious treandi
can be learned directly. We demonstrate that they can bedddry using a synthetic
nebula, ibpesl. (See Figure 2.) Note that the contour plotvsfa in Figure 4 exhibits
a well-defined minimum. Ibpesl is quite elongated, havingeeentricity above 0.7.
Additional study is required in the case of nearly circulabulae.

A contour plot was constructed for each pair of model paramsaising ibpesl. All
plots but one exhibit a distinct minimum. Figure 5 providaseaample of the minimum
for 1 versusa. Both of these parameters influence the size and shape ofigin¢ fegions
on the rim of the nebula image. These quantities are alsmglisshable in the case of
elongated nebulae.

The exceptional contour plot, shown as Figure 6, relatesnd 8 and reveals that
they are correlated. Recall from (10) thatand 3 are parameters of the latitudinal
density functiong(8). As it happens, botly andf control the ‘peakiness’ of the rim
brightening: An increase i causes the bright region to become more compact, and a
decrease i does the same. We are exploring a re-formulation of theutditial density
function that avoids these difficulties.

One benefit of learning a model of the nebula is that we havealiiliiy to alter
the rotation of the model and, thereby, view a PN from any eragid at any distance.
Figure 7 shows a preliminary model of IC418 surrounded by ither®ntours. Also



shown (bottom) is a plot af; (r), the radial density function, and (right) a plotm§(6),
the latitudinal density function. The densities peak atefjgator on the surface of the
inner ellipsoidal bubble. This is due to a higher densityas glong the nebula’s equator.

CONCLUSIONS

The hierarchy has proven to be a powerful tool to enable a maqie estimation of the
parameters in a very difficult forward problem. HowevBRES has proven to be quite
sensitive to initial conditions, unlike earlier stagls®ES initial conditions are generated
by translating theastSES solution intoIBPES variables, but th&astSES solution does
not capture enough information to generate robust inibalditions foriBPES. Altering
the hierarchy to determine more parameters might improzaitoation.

Gradient descent is currently the only search method impieed for the entire
hierarchy.IBPES search is also implemented using simplex search in AutoBgjes
When initialized to therastSES solution, simplex produces results similar to gradient
descent. Cursory explorations with IC418 reveal problemhb Wwith gradient descent
and simplex methods, which may be solved with more sophistittsearch methods.
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